Correlated Atomic Pair Functions by the $e^{-\varrho}$ -Method.

I. Ground State 1¹S and Lowest Excited States n^1 S (n > 1) and n^3 S of Helium

F. F. Seelig and G. A. Becker^a

Institute for Physical and Theoretical Chemistry, University of Tübingen, Germany ^a *Present address:* Radiological Clinic, University of Tübingen, Germany

Reprint requests to Prof. F. S.; Fax: +49 7071 295490, E-mail: friedrich-franz.seelig@uni-tuebingen.de

Z. Naturforsch. **54 a,** 711–717 (1999); received October 29, 1999

Dedicated to Prof. Hans Kuhn, Switzerland, on the Occasion of his 80th Birthday

Some low n^1S and n^3S states of the helium atom are computed with the aid of the $e^{-\varrho}$ method which formulates the electronic wave function of the 2 electrons as $\Psi = e^{-\varrho}F$, where $\varrho = Z(r_1 + r_2) - \frac{1}{2}r_{12}$ and here Z = 2. Both the differential and the integral equation for F contain a pseudopotential \tilde{V} instead of the true potential V that contrary to V is finite. For the ground state, F = 1 yields nearly the Hartree-Fock SCF accuracy, whereas a multinomial expansion in η , r_2 , r_{12} yields a relative error of about 10^{-7} . All integrals can be computed analytically and are derived from one single "parent" integral.

Key words: Electron Correlation; Pair Function; S-states of Helium.